
Grid Compute Resources and
Job Management

2

How do we access the grid ?

 Command line with tools that you'll use
 Specialised applications

 Ex: Write a program to process images that sends data to run on
the grid as an inbuilt feature.

 Web portals
 I2U2
 SIDGrid‏

3

Grid Middleware glues the grid
together

 A short, intuitive definition:

the software that glues together different clusters
into a grid, taking into consideration the socio-
political side of things (such as common policies on
who can use what, how much, and what for)

4

Grid middleware

 Offers services that couple users with remote
resources through resource brokers

 Remote process management
 Co-allocation of resources
 Storage access
 Information
 Security
 QoS

5

Globus Toolkit

 the de facto standard for grid middleware.
 Developed at ANL & UChicago (Globus Alliance)
 Open source
 Adopted by different scientific communities and industries
 Conceived as an open set of architectures, services and

software libraries that support grids and grid applications
 Provides services in major areas of distributed systems:

 Core services
 Data management
 Security

6

Globus - core services

 Are the basic infra-structure needed to create grid services
 Authorization
 Message level security
 System level services (e.g., monitoring)
 Associated data management provides file services

 GridFTP
 RFT (Reliable File Transfer)
 RLS (Replica Location Service)

 Globus uses GT4
 Promotes open high-performance computing (HPC)

7

Local Resource Managers (LRM)

 Compute resources have a local resource manager (LRM)
that controls:
 Who is allowed to run jobs
 How jobs run on a specific resource
 Specifies the order and location of jobs

 Example policy:
 Each cluster node can run one job.
 If there are more jobs, then they must wait in a queue

 LRMs allow nodes in a cluster can be reserved for a specific
person

 Examples: PBS, LSF, Condor

8

GRAM
 Globus Resource Allocation Manager

 GRAM = provides a standardised interface to
submit jobs to LRMs.

 Clients submit a job request to GRAM
 GRAM translates into something a(ny) LRM can

understand

 …. Same job request can be used for many
different kinds of LRM

9

Job Management on a Grid

User

The Grid

Condor

PBS

LSF

fork

GRAM

Site A

Site B

Site C

Site D

10

Two versions of GRAM

 There are two versions of GRAM
 GT2

 Own protocols
 Older
 More widely used
 No longer actively developed

 GT4
 Web services
 Newer
 New features go into GRAM4

 In this module, will be using GT2

11

GRAM’s abilities

 Given a job specification:

 Creates an environment for the job
 Stages files to and from the environment
 Submits a job to a local resource manager
 Monitors a job
 Sends notifications of the job state change
 Streams a job’s stdout/err during execution

12

GRAM components
 Clients –

 eg. globus-job-submit, globus-run
 Gatekeeper

 Server
 Accepts job submissions
 Handles security

 Jobmanager
 Knows how to send a job into the local resource manager
 Different job managers for different LRMs

13

GRAM components

Worker nodes / CPUsWorker node / CPU

Worker node / CPU

Worker node / CPU

Worker node / CPU

Worker node / CPU

LRM eg Condor, PBS, LSF

Gatekeeper

Internet

JobmanagerJobmanager

globus-job-run

Submitting machine
(e.g. User's workstation)

14

Remote Resource Access: Globus

“globusrun
 myjob …”

Globus GRAM Protocol Globus
JobManager

fork()‏

Organization A Organization B

15

Submitting a job with GRAM
 globus-job-run command

 $ globus-job-run rookery.uchicago.edu /bin/hostname

 Run '/bin/hostname' on the resource rookery.uchicago.edu

 We don't care what LRM is used on 'rookery'. This
command works with any LRM.

16

The client can describe the job with GRAM’s
Resource Specifcation Language (RSL)
 Example:

 &(executable = a.out)
 (directory = /home/nobody)

 (arguments = arg1 "arg 2")

 Submit with:
 globusrun -f spec.rsl -r
rookery.uchicago.edu

17

Use other programs to generate RSL

 RSL job descriptions can become very complicated
 We can use other programs to generate RSL for us

 Example: Condor-G – next section

18

Condor
 Condor is a specialized workload management system for

compute-intensive jobs.

 is a software system that creates an HTC
environment
 Created at UW-Madison

 Detects machine availability
 Harnesses available resources
 Uses remote system calls to send R/W operations over the

network
 Provides powerful resource management by matching

resource owners with consumers (broker)

http://www.cs.wisc.edu/condor/

19

How Condor works

Condor provides:
• a job queueing mechanism

• scheduling policy

• priority scheme
• resource monitoring, and
• resource management.

Users submit their serial or parallel jobs to Condor,

 Condor places them into a queue,

 … chooses when and where to run the jobs based upon a policy,

 … carefully monitors their progress, and

 … ultimately informs the user upon completion.

20

Condor - features

 Checkpoint & migration
 Remote system calls

 Able to transfer data files and executables across machines

 Job ordering
 Job requirements and preferences can be specified via powerful

expressions

21

Condor lets you manage a large
number of jobs.
 Specify the jobs in a file and submit them to Condor
 Condor runs them and keeps you notified on their progress

 Mechanisms to help you manage huge numbers of jobs
(1000’s), all the data, etc.

 Handles inter-job dependencies (DAGMan)‏
 Users can set Condor's job priorities
 Condor administrators can set user priorities
 Can do this as:

 Local resource manager (LRM) on a compute resource
 Grid client submitting to GRAM (as Condor-G)‏

22

Condor-G

 is the job management part of Condor.
 Hint: Install Condor-G to submit to resources

accessible through a Globus interface.
 Condor-G does not create a grid service.
 It only deals with using remote grid services.

23

Condor-G …

 does whatever it takes to run your jobs, even if …
 The gatekeeper is temporarily unavailable
 The job manager crashes
 Your local machine crashes
 The network goes down

24

Globus GRAM Protocol Globus
GRAM

Submit to LRM

Organization A Organization B

Condor-GCondor-G

myjob1
myjob2
myjob3
myjob4
myjob5
…

Remote Resource Access:
Condor-G + Globus + Condor

25

Condor-G: Access non-Condor Grid
resources

Globus
 middleware deployed across entire

Grid
 remote access to computational

resources
 dependable, robust data transfer

Condor
 job scheduling across multiple

resources
 strong fault tolerance with

checkpointing and migration
 layered over Globus as “personal

batch system” for the Grid

26

Four Steps to Run a Job with Condor

 These choices tell Condor
 how
 when
 where to run the job,
 and describe exactly what you want to run.

 Choose a Universe for your job
 Make your job batch-ready
 Create a submit description file
 Run condor_submit

27

1. Choose a Universe
 There are many choices

 Vanilla: any old job
 Grid: run jobs on the grid
 Standard: checkpointing & remote I/O
 Java: better for Java jobs
 MPI: Run parallel MPI jobs
 Virtual Machine: Run a virtual machine as job
 …

 For now, we’ll just consider vanilla

28

2. Make your job batch-ready

 Must be able to run in the background:
 no interactive input, windows, GUI, etc.

 Condor is designed to run jobs as a batch system,
with pre-defined inputs for jobs

 Can still use STDIN, STDOUT, and STDERR (the
keyboard and the screen), but files are used for
these instead of the actual devices

 Organize data files

29

3. Create a Submit Description File

 A plain ASCII text file
 Condor does not care about file extensions

 Tells Condor about your job:

 Which executable to run and where to find it
 Which universe
 Location of input, output and error files
 Command-line arguments, if any
 Environment variables
 Any special requirements or preferences

30

Simple Submit Description File

myjob.submit file
Simple condor_submit input file
(Lines beginning with # are comments)‏
NOTE: the words on the left side are not
case sensitive, but filenames are!
Universe = vanilla
Executable = analysis
Log = my_job.log
Queue

31

4. Run condor_submit

 You give condor_submit the name of the submit
file you have created:

condor_submit my_job.submit

 condor_submit parses the submit file

32

Another Submit Description File

Example condor_submit input file
(Lines beginning with # are comments)‏
NOTE: the words on the left side are not
case sensitive, but filenames are!
Universe = vanilla
Executable = /home/wright/condor/my_job.condor
Input = my_job.stdin
Output = my_job.stdout
Error = my_job.stderr
Arguments = -arg1 -arg2
InitialDir = /home/wright/condor/run_1
Queue

33

Details

 Lots of options available in the submit file
 Commands to

 watch the queue,
 the state of your pool,
 and lots more

 You’ll see much of this in the hands-on exercises.

34

Other Condor commands

 condor_q – show status of job queue

 condor_status – show status of compute nodes
 condor_rm – remove a job
 condor_hold – hold a job temporarily
 condor_release – release a job from hold

35

Submitting more complex jobs

 express dependencies between jobs

 ⇒ WORKFLOWS
 And also, we would like the workflow to

be managed even in the face of failures

36

Want other Scheduling possibilities?
Use the Scheduler Universe

 In addition to VANILLA, another job universe is the
Scheduler Universe.

 Scheduler Universe jobs run on the submitting machine
and serve as a meta-scheduler.

 Condor’s Scheduler Universe lets you set up and
manage job workflows.

 DAGMan meta-scheduler included
 DAGMan manages these jobs

37

DAGMan

 Directed Acyclic Graph Manager

 DAGMan allows you to specify the dependencies between your
Condor jobs, so it can manage them automatically for you.

 (e.g., “Don’t run job “B” until job “A” has completed
successfully.”) ‏

38

What is a DAG?

 A DAG is the data structure used by
DAGMan to represent these dependencies.

 Each job is a “node” in the DAG.

 Each node can have any number of “parent”
or “children” nodes – as long as there are no
loops!

Job A

Job B Job C

Job D

39

 A DAG is defined by a .dag file, listing each of its nodes and their
dependencies:

diamond.dag
Job A a.sub
Job B b.sub
Job C c.sub
Job D d.sub
Parent A Child B C
Parent B C Child D

 each node will run the Condor job specified by its accompanying
Condor submit file

Defning a DAG

Job A

Job B Job C

Job D

40

Submitting a DAG

 To start your DAG, just run condor_submit_dag with your .dag file,
and Condor will start a personal DAGMan daemon which to begin running
your jobs:

% condor_submit_dag diamond.dag

 condor_submit_dag submits a Scheduler Universe Job with DAGMan as
the executable.

 Thus the DAGMan daemon itself runs as a Condor job, so you don’t have
to baby-sit it.

41

DAGMan

Running a DAG

 DAGMan acts as a “meta-scheduler”, managing the
submission of your jobs to Condor-G based on the DAG
dependencies.

Condor-G
Job
Queue

C

D

A

A

B
.dag
File

42

DAGMan

Running a DAG (cont’d)

 DAGMan holds & submits jobs to the Condor-G queue at
the appropriate times.

Condor-G
Job
Queue

C

D

B

C

B

A

43

DAGMan

Running a DAG (cont’d)

 In case of a job failure, DAGMan continues until it can no longer make
progress, and then creates a “rescue” file with the current state of the DAG.

Condor-G
Job
Queue

X

D

A

B
Rescue

File

44

DAGMan

Recovering a DAG
 -- fault tolerance

 Once the failed job is ready to be re-run, the rescue file can
be used to restore the prior state of the DAG.

Condor-G
Job
Queue

C

D

A

B
Rescue

File

C

45

DAGMan

Recovering a DAG (cont’d)

 Once that job completes, DAGMan will continue the DAG
as if the failure never happened.

Condor-G
Job
Queue

C

D

A

B

D

46

DAGMan

Finishing a DAG

 Once the DAG is complete, the DAGMan job itself is
finished, and exits.

Condor-G
Job
Queue

C

D

A

B

47

We have seen how Condor:

… monitors submitted jobs and reports progress

… implements your policy on the execution order
of the jobs

… keeps a log of your job activities

48

Long jobs: if my jobs run for weeks
…

 What happens to my job when
 a machine is shut down
 there is a network outage, or
 another job with higher priority preempts it?

 Do I lose all of those hours or days of
computation time??

 What happens when they get pre-empted?
 How can I add fault tolerance to my jobs?

49

provides two important services to your job:
process checkpoint

 remote system calls.

Condor’s Standard Universe to the
rescue!

 Condor can support various combinations of
features/environments in different “Universes”

 Different Universes provide different functionalities to your
job:
 Vanilla: Run any serial job
 Scheduler: Plug in a scheduler
 Standard: Support for transparent process

checkpoint and restart

50

Process Checkpointing

 Condor’s process checkpointing mechanism saves the
entire state of a process into a checkpoint file
 Memory, CPU, I/O, etc.

 The process can then be restarted from the point it left
off

 Typically no changes to your job’s source code needed
—however, your job must be relinked with Condor’s
Standard Universe support library

51

OSG & job submissions

 OSG sites present interfaces allowing remotely
submitted jobs to be accepted, queued and executed
locally.

 OSG supports the Condor-G job submission client
which interfaces to either the pre-web service or web
services GRAM Globus interface at the executing
site.

 Job managers at the backend of the GRAM
gatekeeper support job execution by local Condor,
LSF, PBS, or SGE batch systems.

Acknowledgments:
This presentation based on:
Grid Resources and Job Management

Jaime Frey and Becky Gietzel

Condor Project

U. Wisconsin-Madison

